建築施設監視制御技術の工学展開

建築施設監視制御技術の工学展開協同研究委員会編

	目	次	
1. 活動概要	3	7. インターネット・クラウド活用技術	26
2. 工学展開の概要とアプローチ	4	7.1 クラウド活用の序言	26
2.1 建築施設と工学との関係	4	7.2 クラウド活用型 BACS の概要	26
2.2 建築施設における監視制御	4	7.3 Web サービス	27
2.3 BACS への歴史的発展と位置付	5	7.4 データ永続化	27
2.4 監視制御工学への展開	5	7.5 今後の期待	29
2.5 内外機関による BACS 機能の検討活動	6	8. エネルギー管理技術	30
2.6 今後の動向と課題	6	8.1 エネルギー管理の重要性	30
3. 監視制御システムの構成技術	7	8.2 省エネ関連法規とエネルギー管理	30
3.1 構成技術の概要	7	8.3 エネルギー管理に関するデータ収集技術	31
3.2 機能階層モデル	7	8.4 エネルギーデータの分析技術	31
3.3 実際のシステムでの階層モデル	8	8.5 分析結果による改善	32
3.4 今後の動向	10	8.6 エネルギーの遠隔管理	32
4. BACS をとりまく信頼性確保技術	11	8.7 課題と動向	32
4.1 信頼性技術の概要	11	9. 監視制御システムの構築条件と構築技術	33
4.2 信頼性・安全性設計の手順	11	9.1 監視制御システム構築の概要	33
4.3 信頼性の尺度	11	9.2 機能階層モデルと機能分担	33
4.4 信頼性確保技術	12	9.3 機器の据付けと耐震設計	34
4.5 安心・安全設計	14	9.4 ノイズ障害の防止対策と接地	35
5. 監視制御情報のモデル化	16	9.5 課題と動向	38
5.1 モデル化の前提	16	10. 機能検証・保守サービス	39
5.2 モデル化と可視化	16	10.1 BACS のライフサイクルフロー	39
5.3 共通モデル化の意義	16	10.2 コミッショニングプロセスと総合品質検証	39
5.4 BACnet のモデル化	17	10.3 総合品質検証の内容	40
5.5 BACnet 以外のモデル化	19	10.4 BACnet 通信機能の整合性の検証	40
5.6 今後の課題	19	10.5 保守・保全サービス	40
6. 監視制情報の相互運用性とサービス	20	10.6 今後の動向	41
6.1 相互運用とサービスの概要	20		
6.2 接続機器の相互運用性	20		
6.3 ネットワーク可視性	21		
6.4 BACnet 応用層	23		
6.5 結言	24		

建築施設監視制御技術の工学展開協同研究委員会委員

```
委員長
柳原隆司(東京大学)

幹事
豊田武二(協立機電工業)

委員
大山晋平(日立製作所)

池田耕一(東芝))
沙川の一次でレル)

小嶋っ誠(関工商事)
参木辰典(NTT775リテイース・)

田中東教(NECエンジ・ニアリンク・)
中村科技研)

協力
間田耕児(NECエンジ・ニアリンク・)
```

Sample: DO NOT PRINT

1. 活動概要

1.1 概要

ビル等の建築物の中央監視制御設備はビル等の安全・安 心環境確立、省エネルギー達成の中枢としての重要なイン フラシステムとなっている。ビルの大規模化、広域化およ び監視制御対象の著しい増加と監視制御機能の多様化、 ICT 技術の応用等の高いニーズ等の動向により、監視制御 機能とサービス機能の充実と拡充、およびシステムのオー プン化、マルチベンダー化、システム信頼性の向上および グローバル対応等が一層求められている。また中央監視設 備はエネルギー管理システム (BEMS)、省エネツールとし ての機能が重要となった。一方、ビル等の中央監視制御設 備は制御、計測・計量、コンピュータ応用、通信とネット ワーク応用、信頼性、アプリケーションソフト、監視制御 対象の特性、システム構築、性能検証、保全等の各種の技 術集合の成果物である。これらの技術集合をビル等の中央 監視制御技術として工学的に展開できるか調査研究し、ひ とつの工学的体系に方向付けし、さらに発展させて建築施 設監視制御工学を確立することを目指した。このことは建 築施設、ユーテリテイ設備の監視制御エンジニァリングに 工学的基盤を確立し、また監視制御エンジニアリング教育 に有効と考える。また2011年3月11日の東日本大震災を 起因として多くの原子力発電所の電力供給停止により、電 力の供給と需要の安定的バランスの確保が重要となり、ス マートグリッドへの期待がさらに高まっている。スマート グリッドとリンクするビル等の需要家のグリッド側との 需用電力の連携制御にこの建築施設監視制御工学が多い に貢献すると考えられる。

1.2 協同研究会活動

このために建築施設監視制御技術の工学展開協同研究 委員会を設立して、これらの技術集合をビル等の中央監 視制御技術を工学的に調査研究し、ひとつの工学的体系 に方向付けすることが出来た。BAS メーカ、サブコン、 設計事務所、都市開発会社、大学等の合計 10 名の委員に て構成し平成22年6月に発足し平成24年5月末までに 14 回の委員会、2 回の研究会、1 回の電気学会産業応用 部門シンポジウム参加、1回の産業応用フォーラム開催、 1回の見学会を実施した。

その結果, 建築施設監視制御技術の工学展開に関する 以下の事柄について調査研究を行い、整理することがで きた。

- (1) 監視制御技術の工学展開ノアプローチ
- (2) 監視制御システムの構成技術
- (3) 監視制御情報のモデル化
- (4) 監視制御情報の相互運用性とサービス
- (5) インターネット・クラウド活用技術

- (6) BACS をとりまく信頼性確保技術
- (7) エネルギー管理技術
- (8) 構築条件と構築技術
- (9) 機能検証・保守サービス

1.3 内外の趨勢

米国 ANSI/ASHRAE にて建築設備のマルチベンダー環 境化の装置間における効率的な情報交換の為のオブジェ クト指向のデータ通信プロトコルにとして ANSI/ASHRAE 135-2010 BACnet として実用化されてい る。また ISO においてビルの監視制御システム(BACS) に関して下記の ISO 規格を公開した

- (1) ISO16484-1 プロジェクト仕様と構築 (2010 年 12 月 ISO 化承認)
- (2) ISO16484-2 BACS のハードウエア (2004 年 8 月 ISO 化承認)
- (3) ISO16484-3 BACS の機能(2005年1月 ISO 化承認)
- (4) ISO16484-4 BACS の応用機能(16484-7 と併せて ISO 化審議中)
- (5) ISO16484-5 BACS のデータ通信プロトコル (BACnet を適用) (2004 年 8 月 ISO 化承認)
- (6) ISO16484-6 BACS のデータ通信適合試験 (2005 年 11月 ISO 化承認)
- (7) ISO16484-7 ビルのエネルギー効率向上への貢献 (ISO 化審議中、最終ステージ)
- (8) ISO/TC14908-1~4 LonTalk プロトコルスタック、 TP 通信、PL 通信、IP 通信 (2008 年 12 月 ISO/IEC 化承認)

1.4 成果と今後の活動

ビル等の中央監視制御技術を工学的に調査研究し、ひ とつの工学的体系に特化して調査研究した。このことは 今後の中央監視制御技術が対象建築施設に対して、工学 的に裏付けされた使い勝手がよく、経済性と有効性の高 く、将来性のあるシステムへの方向性が明確となり、今 後のわが国の建築施設、ユーテリテイ設備の監視制御エ ンジニァリングにとって非常に意義があり、技術のさら なる発展に多いに貢献すると考える。今後のわが国の建 築施設、ユーテリテイ設備の監視制御エンジニアリング にとって非常に意義があり、技術のさらなる発展に多い に貢献するであろう。

この建築施設を対象とした監視制御システムは ISO16484 の建築制御システムデザインシリーズのゼネラ ルタイトルとして BACS (Building Automation and Control System) と定義・略称されている。この ISO16484 規格の わが国への普及の促進と今後わが国に展開されるスマー トグリッドと連携した需要家設備のBACS/BEMSへの貢献 が期待される。