ITSとセンシング

ITSセンシング基盤調査専門委員会編

		目	次	
1. I	TSとセンシング	3	4. ヒューマン・ファクター	34
1.1	総論	3	4.1 概要	34
1.2	ITSセンシングのニーズ	3	4.2 ITS・AHS の情報提供とヒューマンインタフェース	34
			4.3 人間工学から見た道路標識のあり方	30
2. セ	ンシングの基礎	4	4.4 都市高速道路におけるドライバーの振る舞い	37
2.1	概要	4	4.5 まとめ	39
2.2	画像処理による交通流計測	4		
2.3	新しい特徴抽出方法と新しい識別器	6	5. ITSセンシング技術の適用	40
2.4	その他のセンシング	8	5.1 概要	40
2.5	まとめ	12	5.2 高速道路維持管理へのITS技術	4
			5.3 新東名リーディングプロジェクト	4.
3. I	TSセンシング技術	14	5.4 ETCシステム運用課題への取り組み	46
3.1	概要	14	5.5 画像センサによる情報提供	4
3.2	ステレオ画像応用センシング	14	5.6 画像センサシステムの運用事例	50
3.3	交通状況予測のためのセンシング	16	5.7 まとめ	52
3.4	プローブカーによる移動体センシング	18		
3.5	車載システムによるセンシング	22	6. 多様化するセンシング対象	5.
3.6	歩行者のセンシング	25	6.1 概要	5.
3.7	路面状況のセンシング	27	6.2 モービルマッピングシステム	5.
3.8	まとめ	32	6.3 電気自動車	50
			6.4 顔画像センシング	58
			6.5 まとめ	62

Sample: DO NOT PRINT

ITSセンシング基盤調査専門委員会委員

委員長 全 炳東(千葉大学) 事 山 田 淳 二(高速道路総合技術研究所) 幹事補佐 長谷川 為春(千葉工業大学) 員 青木 正喜(成蹊大学) 井藤 義行(住友電気工業) 稲垣 隆一(東日本高速道路) 井上 正典(ド ー シ ス) 岩田 武夫(道路新産業開発機構) 岩 元 雅志(西日本高速道路) 太田 純(日本電気) 小野寺 浩(名古屋電機工業) 上條 俊介(東京大学) 北村 忠明(日立製作所) 左古 正春(阪神高速道路) 澤 純平(国土交通省) 島田 重人(東芝)

委員鈴木 邦彦(電気技術開発) 手嶋 英之(中日本高速道路) 内藤 丈嗣(オムロン) 保 彦(名古屋高速道路公社) 廣 江 堀 江 竜司(松下電器産業) 森崎 和裕(木梨電気製作所) 森實 克(警察庁) 正洋(三菱電機) 若 宮 途中退任 金藤 路宏(高速道路総合技術研究所) 幹 事 健(日産自動車) 途中退任 赤 塚 員 新垣 洋平(日産自動車) 岡本 智文(西日本高速道路) 建部 実(阪神高速道路) 吉本 紀一(国土交通省) 善田 健一(中日本高速道路)

1. ITS とセンシング

1.1 総論

この報告書は電気学会産業応用部門 ITS (Intelligent Transport Systems: 高度交通システム) 技術委員会の下に組 織された ITS センシング基盤調査専門委員会(以下本調査 専門委員会) における調査活動をまとめたものである。

(調査対象の定義)

ITS にかかわるセンシング技術は着実に広がりつつある。 画像センサをはじめとする多様なセンサが道路交通システ ムに深く組み入れられ、センサからの情報収集、加工・蓄 積を経て提示されるまでのサイクルも自動化が進みつつあ る。このような状況の中、ネットワーク化されたセンサを 扱うセンサネットの研究開発にも大きな進展が生まれよう としている。

このような状況を踏まえ、本調査専門委員会では平成 19 年10月から約3年間にわたり調査活動を行った。具体的に は、センシング技術を道路交通基盤(インフラストラクチ ャ)として位置づけ、ITS センシングが道路交通全体の効 率・安全・快適にどのように貢献しうるかについてつぎの 各項目について調査した。

- (1)道路交通基盤としてのセンサの技術調査
- (2)単体としてのセンサとネットワーク化されたセン サの技術調査
- プローブカー等の移動体によるセンシングにかか (3)わる技術調査
- (4)その他

調査は主として関連する諸機関における技術開発の動向調 査および現地見学に依った。また主な調査項目(対象)は つぎのとおりである。

- (1)道路交通基盤としてのセンシング技術
- (2)センシングを軸とした渋滞防止, 自然渋滞の解消, 渋滞発生のメカニズム解明
- (3) 車載設備としてのセンシング技術とネットワーク 化に関する技術
- (4)センシングとヒューマンファクター

(センシング技術の現状)

道路交通情報の多くはトラフィックカウンタや監視カメ ラなどのセンサから得られたデータ・数値を自動的に収集, 加工することにより得られる。求められる情報のレベルが 高度な場合には、得られたデータに対し画像処理、パター ン認識・識別、学習などの高度な情報処理も必要である。

長年にわたる研究開発の結果, 安定した運用が可能なセ

ンシング技術やシステムが定着してきた. その一方で、単 体としてのセンサ性能や目的の限定されたセンサ統合技術 の限界も明らかになりつつある。本委員会が対象とする ITS センシングのネットワーク化技術や移動体センシング技術 を調査すれば、さらに高性能で利便性の高い ITS センシン グへの指針と課題を明らかにできる。

本調査専門委員会と関連する過去の関連調査専門委員会は つぎのとおりである。いずれも電気学会 ITS 技術委員会お よび旧道路交通技術委員会の下で活動した調査専門委員会 である。

- (1) 道路環境センシング調査専門委員会 平成 12 年 10 月~平成 14 年 9 月
- 道路交通における計測関連技術調査専門委員会 平成9年10月~平成11年9月
- (3) 状況理解
- 知的交通計測

1.2 ITS センシングのニーズ

道路交通情報の消費者は運転者だけではない。道路管理 者,交通管理者(警察)も時々刻々変化する道路交通状況 を必要とする。また運転者も細かく分ければ、物流、バス /タクシー, 自家用車など, 運転の目的によって分類でき る。それぞれの立場で必要とされる道路交通情報、つまり ITS センシングのニーズには差異がある。また道路交通情報 が必要になるのは運転中とは限らない。直近の状況や季節, 曜日などの条件を加味した運転計画(経路設計)のために も情報は必要になる。

ITS のシステムアーキテクチャは、さまざまな条件下でユ ーザが求める情報を、その収集からユーザへの提示までの 流れとして細分化・整理した利用者サービスを定義してい る⁽¹⁾。各利用者サービスはサブサービスとよばれる。例えば 利用者サービスのひとつである「交通関連情報の提供」に は、サブサービスとして利用者が運転中に受ける「最適経 路情報の提供」と、運転を開始する前に必要な「最適経路 情報の事前提供」の両方が含まれる。この 2 つは本質的に 同じ種類の情報ではあるが、利用者が情報を受けるべき時 期が異なる。このように利用者を主体とした情報の獲得・ 処理・提示を体系化したものが利用者サービスの詳細定義 である。システムアーキテクチャでは21の利用者サービス と 172 のサブサービスの中間に個別利用者サービスを設定 している。

参考文献

(1) 「高度道路交通システム (ITS)に係るシステムアーキテクチャ)」, ITS 関係五省庁(警察庁,通商産業省,運輸省,郵政省,建設省) 発表 (1999)