

Fig. 3.5.6 Typical measurement result of the simultaneous measurements of the time dependences of the external current and the space charge distribution in LDPE.

Reference: A. I. Mohamed, M. Morimoto, T. Akagi, K. Kadowaki, and I. Kitani, "Simultaneous Measurements of Space Charge and External Current for LDPE Films with Various Densities", IEEJ Trans. FM, Vol. 131, No. 12, pp. 1031-1036 (2011)

Fig. 3.5.13. Typical simultaneous measurement results of time dependent (a) external current density J(t), (b) space charge distribution $\rho(x,t)$ and (c) calculated conduction current density $J_c(x,t)$ in (A) LDPE and (B) acetophenone soaked LDPE under dc stress of 150 kV/mm.

Reference: T. Mori, H. Miyake, Y. Tanaka, and T. Takada, "Simultaneous Measurements of Space Charge Distribution and External Current", Proc. 2011 ISEIM, MVP2-11, pp. 370-373 (2011)

Fig. 4.2.4 Space charge profiles of PI under the different field application at different temperature.

Reference: Y. Kishi, T. Hashimoto, H. Miyake, Y. Tanaka, and T. Takada, "Breakdown and Space Charge Formation in Polyimide Film under DC High Stress at Various Temperatures", Journal of Physics Conference Series Vol. 183, 012005 (2009)

Fig. 5.3.6. Space charge accumulation behaviors in LDPE by applying a constant voltage corresponding to 150 kV/mm.

Reference: K. Ogura, H. Miyake, and Y. Tanaka, "Space Charge Behavior in LDPE under Elevating Stepwise DC Voltage Simulated DC Ramp Voltage", The Papers of Technical Meeting on "Dielectrics and Electrical Insulation", IEE Japan, DEI-18-100, pp. 57-61 (2018) (in Japanese)

Fig. 6.1.1 Pulse voltage application to a very short cable specimen and its equivalent circuit.

Reference: N. Hozumi and S. Morita, "Space Charge Measurement for Power Cables", The 2019 Annual Meeting Record I.E.E. Japan, S5 (17)-S5 (20) (2019) (in Japanese)

Fig. 7.6.1 Space charge behaviors in (1) a non-treated and (2) a humidified sample under DC stress of (a) 60, (b) 100 and (c) 120 kV/mm at 80 $^\circ C.$

Reference: T. Ishii, T. Takiwaki, H. Miyake, T. Tanaka, T. Takada and T. Tanaka, "Space Charge Formation in Polyimide Film under High DC Voltage at High Temperatures", IEEJ Trans. FM, Vol. 133, No. 3, pp. 91-97 (2013)

(a) Electrode system and CIM circuit

(b) Photograph of 60-ch 2D-CIM

Fig.8.4.1 Current integration meter for current distribution in the polymer film cross section (60-ch 2D-CIM).

Reference: M. Fukuma and Y. Sekiguchi, "Current Distribution Measurement under uniform Electric Field by Current Integration Meter", Proc. of 2017 ISEIM, pp. 787-790 (2017)

Fig. 8.4.3 Current distribution I(x, y) in the epoxy resin sample with needle- plate (1 mm Gap) under dc voltage.

Reference: M. Fukuma and Y. Sekiguchi, "Current Distribution Measurement under uniform Electric Field by Current Integration Meter", Proc. of 2017 ISEIM, pp. 787-790 (2017)

Standardization of Calibration and Advanced Measurements of Space Charge Distribution at High Temperature Using the Pulsed Electro-acoustic Method

Edited by Investigating R&D Committee for Standardization of Calibration and Advanced Measurements of Space Charge Distribution at High Temperature Using the Pulsed Electro-acoustic Method

	Table of C	ontents	
1. Introduction	3	5.4 Rectangular	
1.1 Publication of Technical Report in English	3	5.5 Short Interval DC Application Synchr	oniz
1.2 Background	3	Shooting Time of Pulse Voltage for M	lobi
2. Principle of PEA Measurement	4	Measurement	
2.1 Basic Theory	4	6. Various Shape	
2.2 Calibration and Deconvolution Procedures	8	6.1 Principe for Cable Measurement	
2.3 Structure of Measurement System	13	6.2 Cable	
3. Improvement of Measurement	16	6.3 Wire	
3.1 High Spatial Resolution	16	7. Applications to New Materials	
3.2 High Speed	18	7.1 Measurement of Space Charge Distributions	in
3.3 2D Space Charge Measurement	21	Composite Materials	
3.4 3D Space Charge Measurement	23	7.2 PE and Its Composite	
3.5 PEA and Current	24	7.3 Polypropylene and Its Composite	
3.6 Measurement with Acoustic Analysis	32	7.4 Epoxy and Its Composite	
4. Measurement Under Specific Environments	36	7.5 Organic Photoconductor	
4.1 High Voltage	36	7.6 Polyimide	
4.2 High Temperature	37	8. $Q(t)$ Method	
4.3 Measurement Under Specific Environments	41	8.1 Principle	
4.4 High Pressure Atmosphere	43	8.2 Typical Measurement Results	
4.5 Irradiation of Light	46	8.3 Application to Cable Insulating Layer	
4.6 Irradiation of Radioactive Rays	48	8.4 2D Measurement	
5. Under Various Electric Field	52		
5.1 AC Voltage	52		
5.2 Polarity Reversal	53		
5.3 Measurement Under DC Ramp Voltage App	olication		