

図 2.1 同一メーカ風車の事故例(2010 年 12 月 4 日) Fig. 2.1. Series catastrophic turbine blade incident of same manufacturer (Dec. 4 2010) 出典:朝日新聞 Web サイト 2010 年 12 月 4 日

図 2.7 ブレード先端 FRP シェルの脱落 Fig. 2.7. Drop off of blade tip FRP shell

図 2.8 ブレード表面金属片取り付け例 (Vestas 社) Fig. 2.8. Metallic lightning protection tape (Vestas)

図 3.4 高い耐溶損性を示す高黒鉛複合素材製レセプタと 純銅製の比較(10/350 µ s-180kA)

Fig. 3. 4. Comparison of high melting resistant copper-graphite receptor and pure copper one under impulse test of $10/350\,\mu$ s-180kA.

(a) 正面

(b) 右側

(c) 損傷箇所

図 3.9 正極性雷インパルス印加時の後縁電線破壊(放電 No.1)

- Fig. 3.9. Discharge manner to the horizontally arranged blade sample Trailing edge upside -
- 出典:電力中央研究所報告・研究報告 H06018:「雷撃による風車ブレードの 破損様相とその保護手法の効果の基礎的検討」(2007)

(a) 正面 (b) 右側 (c) 損傷箇所

図 3.11 正極性雷インパルス印加時の前縁放電様相

Fig. 3. 11. Discharge manner to the horizontally arranged blade sample - Leading edge upside -

出典:電力中央研究所報告・研究報告 H06018:「雷撃による風車ブレードの 破損様相とその保護手法の効果の基礎的検討」(2007)

図 3.12 正極性電インパルス印加時の放電進展様相 (ALPS による高速放電進展様相)

- Fig. 3. 12. Discharge progressing manner to the horizontally arranged blade for positive lightning impulse voltage observed by the ALPS Leading edge upside -
- 出典:電力中央研究所報告・研究報告 H06018:「雷撃による風車ブレードの 破損様相とその保護手法の効果の基礎的検討」(2007)

図 5.14 雷撃を受ける風車の画像

Fig. 5.14. An image of a wind turbine struck by lightning 出典:科学研究費助成事業研究成果報告書:「ウィンドファームにおける雷撃 様相とそれが各風車の雷撃様相に与える影響」,基盤研究 (C) 一般 課題番号 26420256 (2017)

(c)環境音のスペクトログラム (d) 雷撃音響のスペクトログラム
図 5.15 タワー内部の音響データおよびそのスペクトログラム

Fig. 5. 15. Acoustic data in a wind tower and its spectrogram.

出典:宮本,春木,山吹:「風力発電装置内部の音響観測に基づく被雷風車検 出装置の開発-スペクトログラムのパラメータ検討-」,FTE-18-021, HV-18-068,高電圧研究会 (2018)

図 5.18 進行波による断線位置の特定例(1MW 風車の例)

Fig. 5. 18 Detection result of a disconnection point of a downconductor using the propagation method (in the case of 1 MW wind turbine)

出典:NEDO 成果報告書 風力発電等技術研究開発/風力発電高度実用化研究 開発/スマートメンテナンス技術研究開発(雷検出装置等の性能・評価 技術の開発),

https://www.nedo.go.jp/ library/seika/shosai_201808/2018000000588.html

図 8.2 発電・変電設備と送電ケーブルの接続方法^(8.8) Fig. 8.2. Network structure of offshore wind farm

出典:榊原, 籠浦, 織戸, 藤井, 木村, 舘野:「Fukushima FORWARD Project における送電システムの開発(その2)」, 古河電工時報, Vol.135, pp. 7-12 (2016)

風力発電設備の耐雷健全性維持と 稼働率向上のための最新技術の動向

風力発電設備の耐雷健全性維持技術と法規制・規格調査専門委員会編

		目
1. は	じめに	
2. 最	近の雷被害とその対策方法	4
2.1	はじめに	2
2.2	最近の雷被害の様相	2
2.3	ブレード破壊モードの推定と対策	(
2.4	おわりに	-
3. ∄	最近の雷被害とその対策方法	8
3.1	はじめに	8
3.2	レセプタの種類と耐雷性能との関係	8
3.3	ダウンコンダクタへの絶縁電線(被覆線)	
	利用と耐雷性能との関係	10
3.4	おわりに	14
4. 数	値解析を用いた接地設計	16
4.1	はじめに	10
4.2	風車の接地特性	10
4.3	設計手順	17
4.4	設計事例	18
4.5	おわりに	2
5. 稼	働率向上のための取り組み	23
5.1	はじめに	23
5.2	風車への雷撃様相とブレード被害との	
	関係解明	23
5.3	落雷検出装置の諸特性とその検知性能	24
5.4	最新の雷撃検知技術と将来の展望	28
5.5	ブレード内ダウンコンダクタの断線検出	29
5.6	おわりに	32
6.	雷雲接近検知技術の現状	34
6.1	はじめに	34
6.2	LLS による手法	34
6.3	電界による手法	35
6.4	おわりに	35

次			
7 是	近の注却制・相枚の改訂と		
/. 取近の伝規制・規格の取引と			
	やにわりる認証評価	37	
7.1		37	
7.2	風車雷保護に関する法規制・規格の変化	37	
7.3	日本における認証評価	38	
7.4	おわりに	39	
8. 我が国の洋上風力発電において予想される			
雪日	『被害と検討すべき課題	40	
8.1	はじめに	40	
8.2	雷害対策上で考慮すべき		
	洋上風力発電の特徴	40	
8.3	洋上風力発電設備への落雷リスク	41	
8.4	予想される雷に起因する問題および		
	その対策	42	
8.5	おわりに	43	
9. 雷リスクマネジメントの考え方と			
その評価・適用手法		44	
9.1	はじめに	44	
9.2	リスクマネジメントの考え方	44	
9.3	雷リスクマネジメントの考え方	44	
9.4	リスクマネジメントと費用便益分析	45	
9.5	アセットマネジメントの考え方	46	
9.6	公衆安全と予防原則	46	
9.7	雷害対策の費用便益分析	47	
9.8	おわりに	48	
10 t	shur	40	