

図 2.1 同一メーカ風車の事故例 (2010年12月4日)

Fig. 2.1. Series catastrophic turbine blade incident of same manufacturer (Dec. 4 2010)

出典:朝日新聞 Web サイト 2010 年 12 月 4 日

図 2.7 ブレード先端 FRP シェルの脱落 Fig. 2.7. Drop off of blade tip FRP shell

図 2.8 ブレード表面金属片取り付け例 (Vestas 社)

Fig. 2.8. Metallic lightning protection tape (Vestas)

図 3.4 高い耐溶損性を示す高黒鉛複合素材製レセプタと 純銅製の比較 (10/350 μ s−180kA)

Fig. 3. 4. Comparison of high melting resistant copper-graphite receptor and pure copper one under impulse test of $10/350\,\mu$ s-180kA.

(a) 正面 (b) 右側

(c) 損傷箇所

図 3.9 正極性雷インパルス印加時の後縁電線破壊(放電 No. 1)
Fig. 3.9. Discharge manner to the horizontally arranged blade sample - Trailing edge upside -

出典:電力中央研究所報告・研究報告 H06018:「雷撃による風車ブレードの 破損様相とその保護手法の効果の基礎的検討」(2007)

図 3.11 正極性雷インパルス印加時の前縁放電様相

Fig. 3.11. Discharge manner to the horizontally arranged blade sample - Leading edge upside -

出典:電力中央研究所報告・研究報告 H06018: 「雷撃による風車ブレードの 破損様相とその保護手法の効果の基礎的検討」(2007)

図 3.12 正極性雷インパルス印加時の放電進展様相 (ALPS による高速放電進展様相)

Fig. 3.12. Discharge progressing manner to the horizontally arranged blade for positive lightning impulse voltage observed by the ALPS - Leading edge upside -

出典:電力中央研究所報告・研究報告 H06018: 「雷撃による風車ブレードの 破損様相とその保護手法の効果の基礎的検討」(2007)

図 5.14 雷撃を受ける風車の画像

Fig. 5.14. An image of a wind turbine struck by lightning 出典: 科学研究費助成事業研究成果報告書:「ウィンドファームにおける雷撃 様相とそれが各風車の雷撃様相に与える影響」, 基盤研究 (C) 一般 課題番号 26420256 (2017)

(c) 環境音のスペクトログラム
 図 5.15 タワー内部の音響データおよびそのスペクトログラム
 Fig. 5.15. Acoustic data in a wind tower and its spectrogram.
 出典: 宮本,春木,山吹:「風力発電装置内部の音響観測に基づく被雷風車検出装置の開発-スペクトログラムのパラメータ検討-」,FTE-18-021,HV-18-068,高電圧研究会(2018)

図 5.18 進行波による断線位置の特定例(1MW 風車の例)

Fig. 5.18 Detection result of a disconnection point of a downconductor using the propagation method (in the case of 1 MW wind turbine)

出典: NEDO 成果報告書 風力発電等技術研究開発/風力発電高度実用化研究 開発/スマートメンテナンス技術研究開発 (雷検出装置等の性能・評価 技術の開発),

 $https://www.nedo.go.jp/\ library/seika/shosai_201808/20180000000588.html$

図 8.2 発電・変電設備と送電ケーブルの接続方法^(8.8) Fig. 8.2. Network structure of offshore wind farm

出典: 榊原, 籠浦, 織戸, 藤井, 木村, 舘野: 「Fukushima FORWARD Project における送電システムの開発(その2)」, 古河電工時報, Vol.135, pp. 7-12 (2016)

Sample: DO NOT PRINT

風力発電設備の耐雷健全性維持と 稼働率向上のための最新技術の動向

風力発電設備の耐雷健全性維持技術と法規制・規格調査専門委員会編

		目	次	
1. はじめに		3	7. 最近の法規制・規格の改訂と	
2. 最近の雷被害とその対策方法		4	日本における認証評価	3'
2.1	はじめに	4	7.1 はじめに	3'
2.2	最近の雷被害の様相	4	7.2 風車雷保護に関する法規制・規格の変化	3'
2.3	ブレード破壊モードの推定と対策	6	7.3 日本における認証評価	3
2.4	おわりに	7	7.4 おわりに	3
3.	 近の雷被害とその対策方法	8	8. 我が国の洋上風力発電において予想される	
3.1	はじめに	8	雷被害と検討すべき課題	4
3.2	レセプタの種類と耐雷性能との関係	8	8.1 はじめに	4
3.3	ダウンコンダクタへの絶縁電線(被覆線)		8.2 雷害対策上で考慮すべき	
	利用と耐雷性能との関係	10	洋上風力発電の特徴	4
3.4	おわりに	14	8.3 洋上風力発電設備への落雷リスク	4
4. 数	値解析を用いた接地設計	16	8.4 予想される雷に起因する問題および	
4.1	はじめに	16	その対策	42
4.2	風車の接地特性	16	8.5 おわりに	4
4.3	設計手順	17	9. 雷リスクマネジメントの考え方と	
4.4	設計事例	18	その評価・適用手法	4
4.5	おわりに	21	9.1 はじめに	4
5. 稼	働率向上のための取り組み	23	9.2 リスクマネジメントの考え方	4
5.1	はじめに	23	9.3 雷リスクマネジメントの考え方	4
5.2	風車への雷撃様相とブレード被害との		9.4 リスクマネジメントと費用便益分析	4
	関係解明	23	9.5 アセットマネジメントの考え方	4
5.3	落雷検出装置の諸特性とその検知性能	24	9.6 公衆安全と予防原則	4
5.4	最新の雷撃検知技術と将来の展望	28	9.7 雷害対策の費用便益分析	4
5.5	ブレード内ダウンコンダクタの断線検出	29	9.8 おわりに	4
5.6	おわりに	32	10. おわりに	4
6. 雷雲接近検知技術の現状 34		34		
6.1	はじめに	34		
6.2	LLS による手法	34		
6.3	電界による手法	35		
6.4	おわりに	35		

Sample: DO NOT PRINT